The Seidel morphism of Cartesian products

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Seidel Morphism of Cartesian Products

We prove that the Seidel morphism of (M × M , ω ⊕ ω) is naturally related to the Seidel morphisms of (M,ω) and (M , ω), when these manifolds are monotone. We deduce a condition for loops of Hamiltonian diffeomorphisms of the product to be homotopically non trivial. This result was inspired by and extends results obtained by Pedroza [P]. All the symplectic manifolds we consider in this note are ...

متن کامل

A Relative Seidel Morphism and the Albers Map

In this note, we introduce a relative (or Lagrangian) version of the Seidel homomorphism that assigns to each homotopy class of paths in Ham(M), starting at the identity and ending on the subgroup that preserves a given Lagrangian submanifold L, an element in the Floer homology of L. We show that these elements are related to the absolute Seidel elements by the Albers map. We also study, for la...

متن کامل

Condensations of Cartesian products

We consider when one-to-one continuous mappings can improve normalitytype and compactness-type properties of topological spaces. In particular, for any Tychonoff non-pseudocompact space X there is a μ such that X can be condensed onto a normal (σ-compact) space if and only if there is no measurable cardinal. For any Tychonoff space X and any cardinal ν there is a Tychonoff space M which preserv...

متن کامل

Homogeneous cartesian products

A graph G is 1-homogeneous if certain isomorphisms between similarly embedded induced subgraphs of G extend to automorphisms of G. We show that the only connected composite 1-homogeneous graphs are the cube, and Kn ×K2 and Kn ×Kn with n ≥ 2.

متن کامل

Corners in Cartesian products

This note is an illustration of the density-increment method used in the proof of the density Hales-Jewett theorem for k = 3. (Polymath project [2]) I will repeat the argument applying it to a problem which is easier than DHJ. In the last section I will describe the proof of the density Hales-Jewett theorem for k = 3. The results stated here are direct interpretations of the project’s results, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Algebraic & Geometric Topology

سال: 2009

ISSN: 1472-2739,1472-2747

DOI: 10.2140/agt.2009.9.1951